盈亏问题如何讲解-盈亏问题 如何讲解

盈亏问题是经济学中的一个重要概念,指的是投资者在投资过程当中赚取和亏损的金额。要讲授盈亏问题,首先需要明确投资的基本概念,如投资回报率、风险收益比等。然后可以结合实际案例,详细讲授如何计算盈亏,和影响盈亏的各种因素,如市场环境、投资项目的选择等。还可以通过图表等方式,形象直观地展现盈亏变化的进程,帮助投资者更好地理解和掌握盈亏问题。

小学四年级奥数讲解:盈亏问题

专题简析:

在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。

解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:

(1)(盈+亏)÷两次分配差=份数

(大盈-小盈)÷两次分配差=份数

(大亏-小亏)÷两次分配差=份数

(2)每次分得的数量×份数+盈=总数量

每次分得的数量×份数-亏=总数量

例1:一个植树小组植树。如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。这个植树小组有多少人?一共有多少棵树?

由题意可知,植树的人数和树的棵数是不变的。比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。这是因为两种分配方案每人植树的棵数相差7-5=2棵。所以植树小组有18÷2=9人,一共有5×9+14=59棵树。

练 习 一

1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。幼儿园有多少个小朋友?一共有多少个积木?

2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。问宿舍多少间?学生多少人?

3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。问:这个班共有多少学生?

例2:学校将一批铅笔奖给三好学生。如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。三好学生有多少人?铅笔有多少支?

分析与解答:这是两亏的问题。由题意可知:三好学生人数和铅笔支数是不变的。比较两种分配方案,结果相差45-7=38支。这是因为两种分配方案每人得到的铅笔相差9-7=2支。所以,三好学生有38÷2=19人,铅笔有9×19-45=126支。

练 习 二

1,将月季花插入一些花瓶中。如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。求花瓶的只数和月季花的朵数。

2,王老师给美术兴趣小组的同学分发图画纸。如果每人发5张,则少32张;如果每人发3张,则少2张。美术兴趣小组有多少名同学?王老师一共有多少张图画纸?

3,老师将一些练习本发给班上的学生。如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完。有多少个学生?多少本练习本?

例3:有一些少先队员到山上去种一批树。如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。问有多少名少先队员?有多少棵树?

分析与解答:这是两盈的问题。由题意可知:少先队员的人数和树的棵数是不变的。比较两种分配方案,结果相差24-6=18棵,这是因为两种分配方案每人种的树相差19-16=3棵。所以,少先队员有18÷3=6名,树有16×6+24=120棵。

练 习 三

1,小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发。有多少敌人?多少发子弹?

2,杨老师将一叠练习本分给第一小组的同学。如果每人分7本,还多7本;如果每人分8本则正好分完。请算一算,第一小组有几个学生?这叠练习本一共有多少本?

3,崔老师给美术兴趣小组的同学分若干支彩色笔。如果每人分5支则多12支;如果每人分8支还多3支。请问每人分多少支刚好把彩色笔分完?

例4:学校给一批新入学的学生分配宿舍。如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。求学生宿舍有多少间?住宿学生有多少人?

分析与解答:把“每间住14人,则空出4个房间”转化为“每间住14人,则少14×4=56人”。比较两种分配方案,结果相差34+56=90人,而每个房间相差14-12=2人。所房间数为90÷2=45间,学生人数为12×45+34=574人。

练 习 四

1,某校有若干个学生寄宿宿舍,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍。问宿舍有多少间?寄宿学生有多少人?

2,育才小学学生乘汽车去春游。如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆车。问一共有几辆汽车?有多少学生?

3,学校分配学生宿舍。如果每个房间住6人,则少2间宿舍;如果每个房间住9人,则空出2个房间。问学生宿舍有多少间?住宿学生有多少人?

例5:少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑。少先队员一共挖多少树坑?

分析与解答:如果每人都挖6个树坑,那么少(6-4)×2=4个树坑,两次相差4+3=7个树坑。这是因为两种分配方案每人挖的相差6-5=1个树坑。所以,少先队员一共有7÷1=7人,一共挖5×7+3=38个树坑。

练 习 五

1,老师给幼儿园的小朋友分苹果。如果每个小朋友分2个,还多30个;如果其中的12个小朋友每人分3个,剩下的每人分4个,则正好分完。一共有多少个苹果?

2,在一次大扫除中,老师分配若干人擦玻璃。如果其中2人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,则正好擦完。求擦玻璃的人数和玻璃的块数。

3,小红家买来一篮橘子分给全家人。如果其中二人每人分4只,其余每人分2只,则多出4只;如果其中一人分6只,其余每人分4只,则又缺12只。小红家买来多少只橘子?小红家一共有多少人?

全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。除以分配的差,结果就是分配的东西或者是人。盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数

一般情况下,企业每月末会对存货或现金进行盘点,如果账面数与实际盘点数不同就会产生盘盈盘亏,实际盘点数大于账面数就是盘盈,实际盘点数小于账面数就是盘亏。盈就是赚到了,挣到了,利润,的意思,亏就是赔了,亏损的意思,盈亏这个词就是商业行为,最后的统计结果。

1、销售量的变化。它对利润有直接影响,但对盈亏平衡点和贡献比率没什么影响。

2、产品品种变化。利润、盈亏平衡点和贡献比率都会发生变化。这就要求以产品为基础来绘制盈亏平衡点图。

3、劳动或材料利用方面的变化。利润、盈亏平衡点和贡献比率都将变化。

盈亏平衡点分析利用成本的固定性质和可变性质来确定获利所必需的产量范围。如果我们能够将全部成本划分为两类:一类随产量而变化,另一类不随产量而变化,就可以计算出给定产量的单位平均总成本。半可变成本能够分解为固定成本和可变成本。

对不同的产量平均固定成本时,单位成本的固定成本是不相同的,因而这种单位产品平均成本的概念,只对个所计算的产量值是正确的。因此从概念上来看,将固定成本看作成本汇集总额是有益的,此汇集总额在扣除可变成本之后,必须被纯收入所补偿,这种经营才能产生利润。

如果扣除可变成本之后的纯收入刚好等于固定成本的汇集总额,那么这一点或是这样的销售水平称为盈亏平衡点。精确地来说,正是因为在销售进程的这一点上,总的纯收入刚好补偿了总成本(包括固定成本和可变成本),低于这一点就会发生亏损,而超过这一点就会产生利润。

一个简单的盈亏平衡点结构图。横轴代表产量,纵轴代表销售额或成本。假定销售额与销售量成正比,那么销售线是一条起于原点的直线。总成本线在等于固定成本的那一点与纵轴相交,且随着销售量的增加而成比例地表现为增长趋势。