固体地球包括-固体地球是什么
“固体地球”是指由岩石、矿物资和金属构成的地球外部层。它的厚度大约在50⑺0千米之间,是地球的核心和外壳之间的中间层。固体地球也是我们生活的基础,提供了人类居住和活动的地方,并且支持着大气、水和其他生命情势的存在。
地质学的研究对象
地质学的研究对象是地球。地球包括固体地球及其外部的大气。固体地球包括最外层的地壳、中间的地幔及地核三个主要的层圈。目前,主要是研究固体地球的上层,即地壳和地幔的上部。
地球的平均半径为6371公里。其核心可能是以铁、镍为主的金属,称为地核,半径约3400公里。在地核之外,是厚度近2900公里的地幔。地幔之外是薄厚不一的地壳,已知最厚处为75公里,最薄处仅5公里左右,平均厚度约35公里。
地核的内层是固体,也有科学家认为是在强大压力下原子壳层已被破坏的超固体。外层是具有液体性质的物质,还推测有电流在其中运动,被认为是地球磁场的本原。外层的厚度约为2220公里。
地幔下部是含有较多金属硫化物和氧化物的非晶体固体物质;地幔上部成份与橄榄岩大致相当;与地壳相接部分和地壳均具有刚硬的性质,合称为岩石圈,厚度约为60~120公里;在岩石圈之下为一层具有可塑性、可以缓慢流动、厚度约为100公里的软流圈。
地壳表面的海洋、湖泊、河流等水体约占地表总面积的74%。成液态的地表水与冻结在两极地区和高山上的冰川,以及土壤、岩石中的地下水,组成地球的水圈。
地球的外层是大气圈。大气主要集中于高度不超过16公里的近地面中,成份以氮和氧为主。离地越远,大气越稀薄,而且成份也有变化。在100公里外,大气逐渐不能保持分子状态,而以带电粒子的形态出现,其稀薄程度超过人造的真空。带电粒子受到地球磁场的控制,形成能够阻挡来自太阳和宇宙带电粒子流冲击的电磁层。
地球的水圈和大气圈通过水的蒸发、凝结、降水和气体的溶解、挥发等方式互相渗透和影响。固体的地球界面上下,是大气和水活动的场所。岩石圈的物质也不断运动,并通过火山喷发的形式进入水圈和大气圈。地球各圈层的相互作用不断改变着地球的面貌。
地球的这些圈层,是由于其组成物质的重力差异作用而逐渐形成的。地球上的任何质点均受到地球引力和惯性离心力的作用,这两种力的合力就是重力。地球表面重力吸住了大气和水,并对他们的运动产生了影响。
矿物和岩石
在地球的化学成分中,铁的含量最高(35%),其他元素依次为氧(30%)、硅(15%)、镁(13%)等。如果按地壳中所含元素计算,氧最多(46%),其他依次为硅(28%)、铝(8%)、铁(6%)、镁(4%)等。这些元素多形成化合物,少量为单质,它们的天然存在形式即为矿物。
矿物具有确定的或在一定范围内变化的化学成分和物理特征。组成矿物的元素,如果其原子多是按一定的形式在三维空间内周期性重复排列,并具有自己的结构,那么就是晶体。晶体在外界条件适合的时候,其形态多表现为规则的几何多面体,但这种情况很少。
矿物在地壳中常以集合的形态存在,这种集合体可以由一种,也可以由多种矿物组成,这在地质学中被称为岩石。
地球中的矿物已知的有3300多种,常见的只有20多种,其中又以长石、石英、辉石、闪石、云母、橄榄石、方解石、磁铁矿和粘土矿物最最多,除方解石和磁铁矿外,它们的化学成分都以二氧化硅为主,石英全为二氧化硅组成,其余则均为硅酸盐矿物。
由硅酸盐溶浆凝结而成的火成岩构成了地壳的主体,按体积和重量计都最多。但地面最常见到的则是沉积岩,它是早先形成的岩石破坏后,又经过物理或化学作用在地球表面的低凹部位沉积,经过压实、胶结再次硬化,形成具有层状结构特征的岩石。
在地壳中,在大大高于地表的温度和压力作用下,岩石的结构、构造或化学成分发生变化,形成不同于火成岩和沉积岩的变质岩。火成岩、沉积岩、变质岩是地球上岩石的三大类别。火成岩中的玄武岩、花岗岩是地球中最具代表性的岩石,是构成大陆的主要岩石。形成时代最早的花岗岩,年龄达39亿年,而玄武岩是构成海洋所覆盖的地壳的主要物质,均比较“年轻”,一般不超过2亿年。
地层和古生物
地层是以成层的岩石为主体,随时间推移而在地表低凹处形成的构造,是地质历史的重要纪录。狭义的地层专指已固结的成层的岩石,有时也包括尚未固结成岩的松散沉积物。依照沉积的先后,早形成的地层居下,晚形成的地层在上,这是地层层序关系的基本原理,称为地层层序律。
地层在形成以后,由于受到地壳剧烈运动的影响,改变原来的位置,会产生倾斜甚至倒转,但只要能查明其形成和变形的时间,仍可以恢复其原始的层序。在同一时间,地球上各处环境不同,在不同环境中形成的地层各有特点。在地表的隆起部位,不仅不能形成新的地层,还会因受到剥蚀而使已经形成的地层消失。
因此,地层学是研究各地区地层的划分,确定地层的顺序和相邻地区地层在时间上的对比关系的专门学科。它是地质学的基础,也是地质学中最早形成的学科。
古生物是指在地质历史时期,在地球上生存过的各类生物,一般已经绝灭,它们的少量遗体和遗迹形成化石保存在地层中。通过研究这些化石,可以了解地质历史上生物的形态、构造和活动情况。
对各种古生物进行分类,可以认识生物的演化关系;依据地层中所含化石,可以断定地层的层序,生物演化的不可逆性和阶段性,使这种判断具有可靠的根据;古生物的分布和生活习性,还反映出当时地理环境的特点。古生物的研究是地质学也是生物学的重要组成部分。
地质构造和地质作用
地球表层的岩层和岩体,在形成过程及形成以后,都会受到各种地质作用力的影响,有的大体上保持了形成时的原始状态,有的则产生了形变。它们具有复杂的空间组合形态,即各种地质构造。断裂和褶皱是地质构造的两种最基本形式。
地球的岩石圈,已经并还在发生着全球规模的板块运动。板块构造学是二十世纪地质学对地质构造及地质作用的新认识。其基本内容是,岩石圈是地球中最刚硬的部分,它飘浮在地幔中具有塑性、局部熔融、密度较大的软流圈之上。岩石圈中存在着许多很深很大的断裂,这些断裂把岩石圈分割成被称为板块的巨大块体,全球可分为六大板块。
一般认为,主要是地球内部热的不均匀分布引起了物质对流运动,使岩石圈破裂成为板块。板块形成后继续运动,发生分离、碰撞等事件。地幔中的熔融物质沿板块间的拉张断裂带挤入,并不断向断裂两侧扩展,形成新的洋壳,而部分板块则随着载荷它的软流圈物质向下移动而消失于地幔之中。
板块运动被认为是使地壳表层发生位置移动,出现断裂、褶皱以及引起地震、岩浆活动和岩石变质等地质作用的总原因,这些地质作用总称为内力地质作用。内力地质作用改变着地壳的构造,同时为地貌的形成打下基础。
地质作用强烈地影响着气候以及水资源与土壤的分布,创造出了适于人类生存的环境。这种良好环境的出现,是地球大气圈、水圈和岩石圈演化到一定阶段的产物。地球形成的初期,大气圈和水圈的成分、质量都和现代大不相同。例如,大气曾经历以二氧化碳为主的阶段,海水是约在10亿年前才具有今天的含盐度,生物最早出现在地球形成约10亿年以后等等。
地质作用也会给人带来危害,如地震、火山爆发、洪水泛滥等。人类无力改变地质作用的规律,但可以认识和运用这些规律,使之向有利于人的方向发展,防患于未然。如预报、预防地质灾害的发生,就有可能减轻损失。中国在古代就有“束水攻沙”,引黄河水灌溉淤田压碱等经验,是利用河流的地质作用取得成功的例子。
地球圈层分为地球外圈和地球内圈两大部分。 地球外圈可进一步划分为四个基本圈层,即大气圈、水圈、生物圈和岩石圈; 地球内圈可进一步划分为三个基本圈层,即地幔圈、外核液体圈和固体内核圈。 此外在地球外圈和地球内圈之间还存在一个软流圈,它是地球外圈与地球内圈之间的一个过渡圈层,位于地面以下平均深度约150公里处。 这样,整个地球总共包括八个圈层,其中岩石圈、软流圈和地球内圈一起构成了所谓的固体地球。对于地球外圈中的大气圈、水圈和生物圈,以及岩石圈的表面,一般用直接观测和测量的方法进行研究。而地球内圈,目前主要用地球物理的方法,例如地震学、重力学和高精度现代空间测地技术观测的反演等进行研究。地球各圈层在分布上有一个显著的特点,即固体地球内部与表面之上的高空基本上是上下平行分布的,而在地球表面附近,各圈层则是相互渗透甚至相互重叠的,其中生物圈表现最为显著,其次是水圈。
声明:本站所有文章资源内容,如无特殊说明或标注,均为大数据处理内容。如若本站内容侵犯了原著者的合法权益,可联系本站删除。
原文链接:https://edu.h3e.cn/edu/99627.html