数量关系有哪些类型?-数量关系有哪些类型
数量关系主要包括加法、减法、乘法和除法四种基本类型,和一些更复杂的运算类型,如指数、对数、开方等。
公务员考试行测数量关系常见题型总结
(一) 数字推理
(1)数字性质:奇偶数,质数合数,同余,特定组合表现的特定含义 如∏=3.1415926,阶乘数列。
(2)等差、等比数列,间隔差、间隔比数列。
(3)分组及双数列规律
(4)移动求运算数列
(5)次方数列(1、基于平方立方的数列 2、基于2^n次方数列 ,3幂的2,3次方交替数列等为主体架构的数列)
(6)周期对称数列
(7)分数与根号数列
(8)裂变数列
(9)四则组合运算数列
(10)图形数列
(二) 数学运算
(1)数理性质基础知识。
(2)代数基础知识。
(3)抛物线及多项式的灵活运用
(4)连续自然数求和和及变式运用
(5)木桶(短板)效应
(6)消去法运用
(7)十字交叉法运用(特殊类型)
(8)最小公倍数法的运用(与剩余定理的关系)
(9)鸡兔同笼运用
(10)容斥原理的运用
(11)抽屉原理运用
(12)排列组合与概率:(重点含特殊元素的排列组合,插板法已经变式, 静止概率以及先后验概率)
(13)年龄问题
(14)几何图形求解思路 (求阴影部分面积 割补法为主)
(15)方阵方体与队列问题
(16)植树问题(直线和环形)
(17)统筹与优化问题
(18)牛吃草问题
(19)周期与日期问题
(20)页码问题
(21)兑换酒瓶的问题
(22)青蛙跳井(寻找临界点)问题
(23)行程问题(相遇与追击,水流行程,环形追击相遇: 变速行程,曲线(折返,高山,缓行)行程,多次相遇行程, 多模型行程对比)
在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。现分述如下:
一、加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。一共养兔多少只?
想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。
列式:8+4=12(只)答:(略)
2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少
只?
想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)
列式:4+3=7(只)
答:(略)
二、减法有3种:
1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?
想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)
列式:12—8=4(只)
2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?
想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)
列式:8-3=5(只)
3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?
想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)
列式:8-5=3(只)
三、乘法有2种:
1.已知每份数和份数。求总数。
例:小利家养了6笼兔子,每笼4只。一共养兔多少只?
想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少
。用乘法计算。
列式:4×6=24(只)
本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
2.求一个数的几倍是多少?
例:白兔有8只,灰兔的只数是白兔的2倍。灰兔有多少只?
想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?
列式:8×2=16(只)
四、除法有4种:
1.已知总数和份数,求每份数。
例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?
想:已知总数(15个),份数(放3盘)。求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。
列式:15÷3=5(个)
2.已知总数和每份数,求份数。
例:小强有15个苹果,每5个放一盘,可以放几盘?
想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?
列式:15÷5=3(盘)
3.求一个数是另一个数的几倍。
例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?
想:看苹果的个数里面有几个梨的个数,就是梨的几倍。即求一个数是另一个数的几倍。
列式:15÷5=3
4.已知一个数的几倍是多少,求这个数。(用除法来计算。)
声明:本站所有文章资源内容,如无特殊说明或标注,均为大数据处理内容。如若本站内容侵犯了原著者的合法权益,可联系本站删除。
原文链接:https://edu.h3e.cn/edu/4874.html