数量关系有哪些类型?-数量关系有哪些类型

数量关系主要包括加法、减法、乘法和除法四种基本类型,和一些更复杂的运算类型,如指数、对数、开方等。

公务员考试行测数量关系常见题型总结

(一) 数字推理

(1)数字性质:奇偶数,质数合数,同余,特定组合表现的特定含义 如∏=3.1415926,阶乘数列。

(2)等差、等比数列,间隔差、间隔比数列。

(3)分组及双数列规律

(4)移动求运算数列

(5)次方数列(1、基于平方立方的数列 2、基于2^n次方数列 ,3幂的2,3次方交替数列等为主体架构的数列)

(6)周期对称数列

(7)分数与根号数列

(8)裂变数列

(9)四则组合运算数列

(10)图形数列

(二) 数学运算

(1)数理性质基础知识。

(2)代数基础知识。

(3)抛物线及多项式的灵活运用

(4)连续自然数求和和及变式运用

(5)木桶(短板)效应

(6)消去法运用

(7)十字交叉法运用(特殊类型)

(8)最小公倍数法的运用(与剩余定理的关系)

(9)鸡兔同笼运用

(10)容斥原理的运用

(11)抽屉原理运用

(12)排列组合与概率:(重点含特殊元素的排列组合,插板法已经变式, 静止概率以及先后验概率)

(13)年龄问题

(14)几何图形求解思路 (求阴影部分面积 割补法为主)

(15)方阵方体与队列问题

(16)植树问题(直线和环形)

(17)统筹与优化问题

(18)牛吃草问题

(19)周期与日期问题

(20)页码问题

(21)兑换酒瓶的问题

(22)青蛙跳井(寻找临界点)问题

(23)行程问题(相遇与追击,水流行程,环形追击相遇: 变速行程,曲线(折返,高山,缓行)行程,多次相遇行程, 多模型行程对比)

在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。现分述如下:

一、加法的种类:(2种)

1.已知一部分数和另一部分数,求总数。

例:小明家养灰兔8只,养白兔4只。一共养兔多少只?

想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。

列式:8+4=12(只)答:(略)

2.已知小数和相差数,求大数。

例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少

只?

想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)

列式:4+3=7(只)

答:(略)

二、减法有3种:

1.已知总数和其中一部分数,求另一部分数。

例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?

想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)

列式:12—8=4(只)

2.已知大数和相差数,求小数。

例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?

想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)

列式:8-3=5(只)

3.已知大数和小数,求相差数。

例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?

想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)

列式:8-5=3(只)

三、乘法有2种:

1.已知每份数和份数。求总数。

例:小利家养了6笼兔子,每笼4只。一共养兔多少只?

想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少

。用乘法计算。

列式:4×6=24(只)

本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。

即:每份数×份数=总数。

决不可以列式:份数×每份数=总数。

2.求一个数的几倍是多少?

例:白兔有8只,灰兔的只数是白兔的2倍。灰兔有多少只?

想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?

列式:8×2=16(只)

四、除法有4种:

1.已知总数和份数,求每份数。

例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?

想:已知总数(15个),份数(放3盘)。求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。

列式:15÷3=5(个)

2.已知总数和每份数,求份数。

例:小强有15个苹果,每5个放一盘,可以放几盘?

想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?

列式:15÷5=3(盘)

3.求一个数是另一个数的几倍。

例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?

想:看苹果的个数里面有几个梨的个数,就是梨的几倍。即求一个数是另一个数的几倍。

列式:15÷5=3

4.已知一个数的几倍是多少,求这个数。(用除法来计算。)