如何解排列组合方程-如何解排列组合
排列组合是数学中的一种重要方法,它可以帮助我们计算出不同的可能性。它的基本原理是将一系列元素依照一定的方式进行排列和组合,从而取得不同的结果。
在排列组合中,有三种主要的方法:顺序排列、全排列和子集。
顺序排列是指将一系列元素依照一定的顺序排列,例如把5个人放在3个位置上,就有24种可能的排列方式。
全排列是指将一系列元素依照一定的顺序排列,并且每一个元素都有可能出现在不同的位置上,例如把5个人放在3个位置上,就有120种可能的排列方式。
子集是指从一组元素中取出一部份元素,并且这些元素可以有不同的排列方式,例如把5个人放在3个位置上,就有120种可能的排列方式。
排列组合的利用非常广泛,在统计学、几率论、计算机科学等领域都有重要的作用。因此,了解和掌握排列组合的基本概念和方法对我们的学习和工作都是非常有用的。
排列组合的解题技巧有哪些
1、分类与分步法
在解答题目中含有限定条件这一类排列组合问题时,我们应该先将题目中所提到的元素按照其特性进行分类,然后按照事件的先后顺序对题目进行分步解答,同时保证每一步都是相对独立,不要算重或漏算。在最后的计算过程中要注意计算法则分类则和,分步则积。
例如:有五个苹果排成一排,其中甲苹果不能排在排头,乙苹果不能排在末尾,问共有几种排法?分析:根据题意我们可以先排甲,对甲的位置进行讨论:
1)若将甲苹果排在末尾,那么剩下四个苹果就可以任意排了,共有A 种排法;
2)若将甲苹果排在第二,第三或第四个位置上,则有A A A 3种排法,然后根据排列组合中分类计数原理,将所有结果进行相加,共有A +A A A =78种排法。
2、特殊元素优先考虑发
在一道排列组合题目中如果含有某个特殊元素,一般我们应优先考虑特殊元素,从特殊元素着手,然后再考虑其它元素的排列组合问题。例如有五张卡片,卡片上依次标注的数字为0,2,3,4,5,选择三张卡片组成一个三位数,问组成的三位数中有多少是偶数?
分析:根据题意要求组成的这个三位数是偶数,所以最后一个数字一定要是偶数,只能是0或2或4,又因为0不能排在首位,所以本题中0就是特殊元素,应优先考虑。根据0排放的位置我们将0分成两类,:
1)0排末尾时有A 个;
2)0不排在末尾时,则有个A A A ;根据分类计数的原理,总共有A +A A A =30个。
3、混合问题先选后排法
对于排列组合中混合类的问题,我们一般可以先将所需的元素选出来然后再对元素进行排列组合。例如4个不同小球滚入四个不同的小洞中,正好有一个空洞,问小球共有多少种滚法?分析:题目中提到正好一空的洞,所以肯定有一个洞中滚入了两个小球。
首先我们先将2个小球选出来,从4个中选2个,共有C 种选法;接下来在从4小洞中选3个洞来装小球,共有C 种选法;然后把选出来的的2个小球看成是一个小球,这样就变成了3个小球,3个球滚入3个洞中共有A 种滚法,再根据分步计数的原理共有C C A 种滚法。
4、否定问题淘汰法
对于排列组合中含有否定意思的问题,可以从整体中把不符合条件的去除,但需要注意的时一定要细心,不能除去多了或者少了。
例如在方法2中的例题,就可以用此种方法来解答:5张卡片排成三位数,共有A 种排法,但0不能排在首位,所以需要去除这种情况;而且因为是偶数所以3、5不能排在最后一位,所以也要去除。故共有A -A -A A A =30。
5、相邻捆绑法,相隔插空法
在解答几个元素相邻的排列组合问题时,我们应先从整体进行考虑,将题目中要求相邻的元素捆绑成一个元素进行排列组合,然后在对捆绑的部分进行排序,这种解题的方法就叫捆绑法。例如有8本不同的书;包括3语文书,2本化学书和3本其它学科的书籍。把这些书排成一行,但要3本语文书必须排在一起,2本化学书也必须排在一起的排法共有多少种?
分析:首先把3本语文书看成一个整体,2本化学书看成一个整体,这样加上其他3本书,就相当于5个元素,全排列共有A 种排法;3本语文书有A 种排法,2本化学书有A 种排法;然后根据分步计数原理共有A A A =1440种排法。
声明:本站所有文章资源内容,如无特殊说明或标注,均为大数据处理内容。如若本站内容侵犯了原著者的合法权益,可联系本站删除。
原文链接:https://edu.h3e.cn/edu/38420.html