什么复利计息-什么计复利

复利是指投资本金和利息的积累计算,以相同的比例逐年累加,构成的利息收入再投资到本金中,构成更大的收益。例如,如果你每一年把100元存入银行,年利率为5%,那末第一年你将取得5元的利息,第二年你将取得利息5元(5元+5%*100),第三年你将取得利息5元(5元+5%*200)以此类推。这就是复利的作用,它可让你的投资本金不断增长,从而实现财务上的长时间增长。

按月计复利是什么意思

按月计复利也叫按月计收复利。

复利是复合利息的意思,是指每年的收益还可以产生收益,具体是将整个借贷期限分割为若干段,前一段按本金计算出的利息要加入到本金中,形成增大了的本金,作为下一段计算利息的本金基数,直到每一段的利息都计算出来,加总之后,就得出整个借贷期内的利息。简单来说就是我们常说的“利滚利”。

复利的计算公式是:S = P(I + i)n,其中以符号I代表利息,P代表本金,n代表时期,i代表利率,S代表本利和。

按月计收复利时期n就是以月为标准,如果是以月为标准的话,本金100,月利率为10%,一年后就是100*(1+10%)12。

举个例子:

如果取现1000,每天的利息是0.05%,30天取现利息1000*0.05%*30天=15元;假如这笔钱下个月没有还,那么下个月计息就计复利:(1000+10+15)*0.05%*30天=15.375元

复利的计算公式是:F=P(1+i)n。

F:复利终值=? 。

P:本金=2610 。

i:利率=4.14% 。

N:利率获取时间的整数倍 。

第一年:p 。

第二年:P*(1+i) 。

第三年:{P*(1+i)}(1+i)=P*(1+i)+P*(1+i)2(次方) 。

第四年: P*(1+i)+P*(1+i)2(次方)+P*(1+i)3(次方) 。

第二十年:P*(1+i)+P*(1+i)2(次方)+P*(1+i)3(次方)+…+P*(1+i)19(次方)=p*{(1+i)+(1+i)2(次方)+(1+i)3(次方)+…(1+i)19(次方)} 。

最后经过计算,得p=?

复利的基本概念:

复利,是与单利相对应的经济概念,单利的计算不用把利息计入本金,而复利恰恰相反,它的利息要并入本金中重复计息。

复利就是复合利息,它是指每年的收益还可以产生收益,具体是将整个借贷期限分割为若干段,前一段按本金计算出的利息要加入到本金中,形成增大了的本金,作为下一段计算利息的本金基数,直到每一段的利息都计算出来,加总之后,就得出整个借贷期内的利息。

简单来说就是俗称的利滚利。爱因斯坦称其为“世界第八大奇观”。

复利的计算公式的算法和特点:

1、复利的计算方法。

复利公式分两种情况:

第一种一次性支付的情况,包含两个公式如下:

(1)、一次性支付终值计算:F=P×(1+i)^n。

(2)、一次性支付现值计算:P=F×(1+i)^-n。

这两个互导,其中P代表现值,F代表终值,i代表利率,n代表计息期数。

第二种:等额多次支付的情况,包含四个公式如下:

(3)、等额多次支付终值计算:F=A×[(1+i)^(n+1)-1]/i。

(4)、等额多次支付现值计算:P=A×[(1+i)^(n+1)-1]/(1+i)^n×i。

(5)、资金回收计算:A=P×(1+i)^n×i/[(1+i)^(n+1)-1]。

(6)、偿债基金计算:A=F×i/[(1+i)^(n+1)-1]。

2、复利计算公式是计算前一期利息再生利息的问题,计入本金重复计息,即“利生利”“利滚利”。它的计算方法主要分为2种:一种是一次支付复利计算;另一种是等额多次支付复利计算。

它的特点是:把上期末的本利和作为下一期的 本金,在计算时每一期本金的数额是不同的。主要应用于计算多次等额投资的本利终值和计算多次等额回款值。